

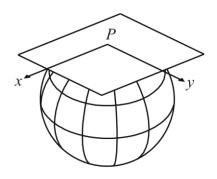
VORARBEITER

Vermessungskunde

VORARBEITER Vermessungskunde

Inhaltsverzeichnis


1	Einführung	3
	1.1 Einteilung der Vermessungskunde	3
	1.2 Aufgaben der Vermessungskunde	3
	1.3 Ziel dieser Veranstaltung	3
2	Grundlagen	4
	2.1 Maßeinheiten	4
	2.2 Winkelmaße	4
	2.3 Maßstab	5
	2.4 Steigung	5 5 7
_	2.5 Fehlerarten	
3	Streckenmessung	8
	3.1 Messmittel	8
	3.2 Messmethoden	11
4	3.3 Genauigkeit der Streckenmessung	13
4	Winkelmessung	15
	4.1 Der Theodolit	15
	4.2 Nivelliergerät 4.3 Genauigkeit der Winkelmessung	16 17
_		18
	Koordinatensystem in Österreich	19
О	Satellitengestützte Messmethoden 6.1 Satellitensystem	19
	6.2 Bodensystem	19
	6.3 Korrekturdaten online	20
	6.4 Differentielles GPS	21
	6.5 Transformation	22
7	Nivellement	23
•	7.1 Höhensysteme	23
	7.2 Messmittel	25
	7.3 Messmethoden	29
	7.4 Genauigkeit des Liniennivellements	36
	7.5 Prüfverfahren für Nivelliergeräte	37
	7.6 Kanalbau-Laser	38
0	Flächenbestimmung	42
0	•	42
	8.1 Flächenrechnung mit Maßzahlen	44
	8.2 Flächenrechnung mit Koordinaten	
_	8.3 Flächenrechnung mit Winkeln und Seiten	45
	Massenbestimmung	48
10) Kataster	49
	10.1 Entstehung und Aufgabe	49
	10.2 Bestandteile des Katasters	49
	10.3 Grundsteuerkataster	49
	10.4 Grenzkataster	50
ΙA	NHANG	
	A Topographie	51
	B Katastralmappe	54
	C Quellen- und Literaturverzeichnis	55
	D Angaben zum Autor	55


1 Einführung

1.1 Einteilung der Vermessungskunde

Die Vermessungskunde wird in zwei unterschiedliche Bereiche unterteilt:

Die Höhere Vermessungskunde befasst sich mit der globalen Erdmessung und mit der Grundlagenmessung ganzer Staaten (= Landesvermessung), wobei die Erdkrümmung berücksichtigt werden muss. Dabei müssen Refraktion (= Lichtbrechung), meteorologische Daten wie Druck, Temperatur und Luftfeuchtigkeit sowie das Schwerefeld der Erde in die Berechnungen einbezogen werden.

Die <u>Niedere Vermessungskunde</u> umfasst Vermessungen in kleineren Gebieten, wobei der Ausschnitt der Erdoberfläche als Ebene betrachtet wird. Dieser Bereich umfasst die Vermessung der Erdoberfläche in ihrer Detailform und die Ingenieurgeodäsie (= Absteckung sowie Überwachung von Hoch- und Tiefbauten)

1.2 Aufgaben der Vermessungskunde

Die Vermessungskunde befasst sich vorwiegend:

- a. mit der Vermessung und Berechnung von Teilen der Erdoberfläche und ihrer Darstellung in Karten und Plänen (= Aufnahme)
- b. mit der Übertragung von graphischen oder rechnerischen Daten aus Plänen oder Karten in die Natur (= Absteckung)

1.3 Ziel dieser Veranstaltung

Die Teilnehmer sollen folgende Punkte beherrschen:

- 1. richtiger Umgang mit den Vermessungsgeräten (Aufstellung, Ablesung, Pflege)
- 2. Höhenbestimmung (Planung, Durchführung, Auswertung)
- 3. einfache Absteckungsarbeiten
- 4. Flächen- und Massenbestimmung

2 Grundlagen

2.1 Maßeinheiten

<u>Längenmaß</u> Einheit: das Meter, Einheitszeichen [*m*]

Ableitungen: 1 m = 10 dm = 100 cm

 $1000 \ m = 1 \ km$

Flächenmaß Einheit: der Quadratmeter, Einheitszeichen [*m*²]

Ableitungen: 1 m^2 = 100 dm^2 = 10.000 cm^2

 $1 \text{ km}^2 = 100 \text{ ha} = 10.000 \text{ a} = 1.000.000 \text{ m}^2$

Raummaß Einheit: Kubikmeter, Einheitszeichen [*m*³]

Ableitungen: 1 m^3 = 1.000 dm^2 = 1.000.000 cm^2

 $1 dm^2 = 1 I$

2.2 Winkelmaße

Hier gibt es keine festgesetzt, internationale Einheit — es bestehen mehrere Möglichkeiten:

Altgradmaß $1^{\circ} = 60' = 3600$ " Vollkreis: 360 °

Neugradmaß $1^g = 100^c = 10000^{cc}$ Vollkreis: 400^g

Bogenmaß $arc \alpha = \hat{\alpha} = \frac{b}{r}$ $b = r \cdot \hat{\alpha}$ Vollkreis: 2π

Beispiel gegeben: $r=27{,}00m$, $b=42{,}412m$ gesucht: $\widehat{\alpha}$ Lösung: $\widehat{\alpha}=\frac{42{,}412}{27{,}00}=1{,}5708$

Aufgabe 1 Berechne die Bogenlänge b, wenn der Radius r = 20,00 m beträgt und ein Winkel von 28°,648 eingeschlossen wird.

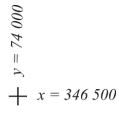
Praktische Anwendungsgebiete sind vor allem im Straßenbau zu finden:

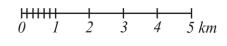
- ⇒ Übergangsbogen bei Auf- oder Abfahrten, Gleisanlagen
- ⇒ Grundstücksgrenzen, wenn die Bauordnung Kreise zulässt

4

2.3 Maßstab

Der Maßstab bezeichnet das Verkleinerungsverhältnis des Planes oder der Karte im Vergleich zur Natur. Dieses Verhältnis wird mit einer Bruchzahl ausgedrückt, z.B. 1:100

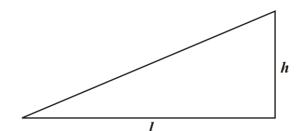

Die gebräuchlichsten Maßstäbe in der Vermessungskunde:


Für Detailpläne: 1:100, 1:200, 1:500

Für Übersichtskarten, Kataster: 1:1000, 1:2000

Kartenwerke aus der Monarchie: 1:1440, 1:2880

Graphische Maßstäbe:



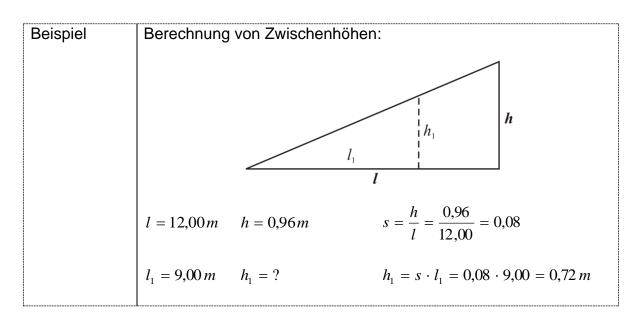
2.4 Steigung

Das Steigungsverhältnis ist immer das Verhältnis der Höhe zur Länge:

$$s = \frac{h}{l}$$

$$l = s \cdot l$$
 $l = \frac{h}{s}$

Man kann das Steigungsverhältnis auch in Prozent (%) oder Promille (‰) angeben:


$$s\left(\%\right) = \frac{h}{l} \cdot 100$$

$$s(\%) = \frac{h}{l} \cdot 100$$
 $s(\%) = \frac{h}{l} \cdot 1000$

Umformungen:

$$h = \frac{s \cdot l}{100}$$

$$h = \frac{s \cdot l}{100} \qquad \qquad l = \frac{h \cdot 100}{s}$$

Aufgabe 2 Berechne die fehlenden Werte (Skizze unten)

2.5 Fehlerarten

Alle Messungen müssen mit einer bestimmten Genauigkeit ausgeführt werden. Da völlig fehlerfreie Messungen nicht möglich sind, werden die Messungen mehrmals wiederholt. Die Messfehler, die dabei entstehen können, unterteilt man in drei Gruppen:

2.5.1 Grobe Fehler

Sie treten durch eine Fehlleistung des Beobachters auf und liegen im Allgemeinen weit über der Messgenauigkeit. Sie werden durch Kontrollmessungen aufgedeckt und können durch entsprechende Sorgfalt des Beobachters vermieden werden.

Beispiel: Ablesefehler, Ziffernsturz

2.5.2 Systematische Fehler

Diese Fehler verfälschen das Messergebnis stets in eine Richtung (positiv oder negativ) und sind von einem oder mehreren Parametern abhängig (z.B. Temperatur, Luftdruck, Instrumenten-Justierung ...)

Sie lassen sich durch die Wahl geeigneter Meßmethoden, durch sorgfältige Eichung der Messgeräte sowie durch Verwendung entsprechender mathematischer Formeln weitgehend ausschalten.

Beispiel: Streckenmessung mit Stahlmaßband — es entsteht auf Grund eines Temperaturunterschiedes eine Längenänderung

2.5.3 Zufällige Fehler

Das sind alle nicht groben und nicht systematischen Fehler. Sie sind zufallsbedingt, d.h. sie treten als positive und negative Zahl auf und variieren sehr unregelmäßig im Betrag. Sie werden u.a. hervorgerufen durch die begrenzte Schärfe der menschlichen Sinne und der Unvollkommenheit der Messinstrumente.

Beispiel: Lattenablesung beim Nivellement (Schätzen der *mm*)

7

3 Streckenmessung

3.1 Messmittel

3.1.1 Maßband

- Stahl
- Stahl mit Kunststoffüberzug
- Invar (= 64,4% Eisen, 35,6% Nickel)
- Kunststoffbänder vermeiden !!

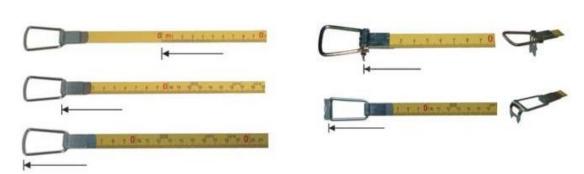
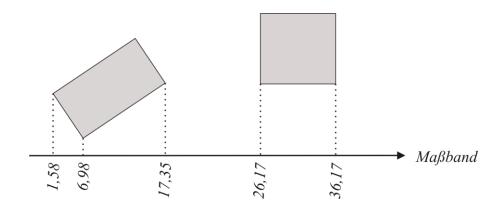



Abbildung: Unterschiedliche Maßbandanfänge

Bei vielen aufeinander folgenden Maßen arbeitet man mit Durchlaufmessungen: sie liefern eine höhere Genauigkeit und man nützt die gesamte Maßbandlänge aus.

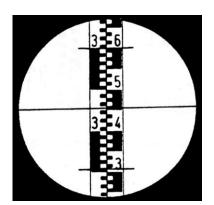
Anmerkung:

Zugkraft des Bandes und die Eichtemperatur sind am Maßband aufgeprägt.

3.1.2 Messrad

Das System ist sehr einfach: die Messlänge wird mit einem Rad abgefahren, die gemessene Länge wird über ein mechanisches Getriebe auf ein Zählwerk übertragen und kann sofort über eine Anzeige abgelesen werden. Es hat sich vor allem im Asphaltstraßenbau durchgesetzt.

Vorteile:


- es ist nur eine Person zur Messung notwendig
- man kann auch die Bogenlänge messen
- man kann sehr schnell auch große Strecken messen

Nachteile:

- es ist eine ebene Unterlage notwendig (über Erd- und Schotterhaufen kann nicht gemessen werden)
- es ist eine horizontale Ebene notwendig (man benötigt keine Schrägstrecken)
- geringe Messgenauigkeit

3.1.3 Nivellier oder Theodolit

Beide Geräte besitzen im Messfernrohr nicht nur ein Fadenkreuz, sondern auch einen Ober- und Unterfaden. Zielt man auf eine Messlatte, kann die Distanz näherungsweise bestimmt werden:

$$O - U$$
 [cm] $\cong D$ [m]

$$29,5 \ cm \cong 29,5 \ m$$

3.1.4 Elektro-optische Messgeräte

Diese dienen zur Messung von Strecken mit sehr hoher Genauigkeit. Das Distanzmessgerät wird auf einen Theodoliten montiert oder ist bereits fix eingebaut (= Tachymeter). Im anzumessenden Ziel wird ein Reflektor (= Prisma) aufgestellt, das den ausgesandten Infrarot-Strahl zum Distanzmessgerät reflektiert.

Theodolit und Distanzmesser

Distanzmessgerät wird aufgesetzt und verwenden Infrarot als Lichtquelle, d.h.es muss ein Prisma am Ziel verwendet werden.



Tachymeter

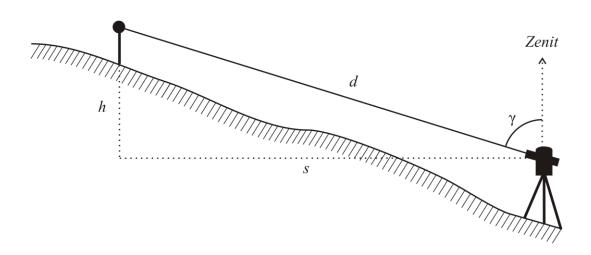
Das Distanzmessgerät ist im Fernrohr eingebaut.

Bei Verwendung eines Prismas wird normalerweise unsichtbares Licht (Infrarot) verwendet.

Bei Verwendung ohne Prisma (= reflektorloses Messen) wird Laserlicht benötigt – am Ziel wird ein roter Punkt sichtbar.

<u>Distomat</u> ⇒ ein handliches Laser-Messgerät.

Da diese Geräte mittlerweile eine Distanz von 200 bis 300 *m* bestimmen können, sind sie für viele Aufgaben sehr gut geeignet.


Die Horizontierung erfolgt über eine Libelle.

Nachteilig ist, dass bei Sonnenschein der Laserpunkt nur schwer zu erkennen ist.

Messmethoden 3.2

3.2.1 Direkte Streckenmessung mit dem Tachymeter

Zenitwinkel γ :

$$s = d \cdot \sin \gamma$$

$$h = d \cdot \cos \gamma$$

Horizontwinkel
$$\gamma_H$$
: $s = d \cdot \cos \gamma_H \text{ mit } \gamma_H = 90 - \gamma$

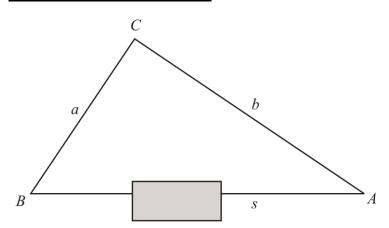
$$h = d \cdot \sin \gamma_H$$

Aufgabe 3

gegeben:

$$\gamma_H = 35^{\circ}$$
, $d = 89.00 \, m$

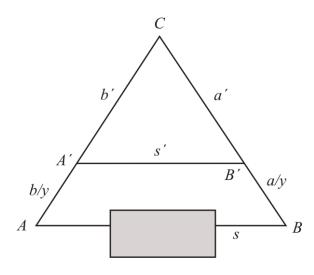
berechne:


s, h

3.2.2 Indirekte Streckenmessung

Sie wird dort angewendet, wo die direkte Streckenmessung nicht möglich ist:

- ⇒ wenn ein Sichthindernis vorhanden ist
- ⇒ wenn die zu messende Strecke nicht begehbar ist
- ⇒ wenn das anzumessende Ziel nicht erreichbar ist


Rechtwinkeliges Hilfsdreieck

$$s = \sqrt{a^2 + b^2}$$

$$a = 33,45m$$

 $b = 46,31m$

Ähnliche Dreiecke

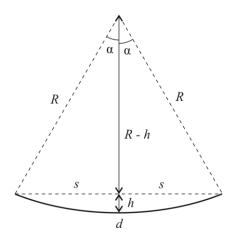
$$a = 42,45m$$

 $b = 46,31m$

$$a' = 35,00m$$

$$b' = \frac{a' \cdot b}{a} = 38,18m$$

s' wird gemessen: 25,87m


$$s = \frac{a}{a'} \cdot s' = 31,38m$$

- a. man stellt sich in einem beliebigen Punkt *C* auf und bestimmt die beiden Seiten *a* und *b*
- b. man verkürzt die Seite a um einen beliebigen Abstand ⇒ A' und misst a'
- c. man berechnet $b' = \frac{a' \cdot b}{a}$ und reduziert die Seite $b \Rightarrow B'$
- d. die Strecke s' zwischen A' und B' kann gemessen werden
- e. die gesuchte Seite s ergibt sich aus: $s = \frac{a}{a'} \cdot s'$

3.3 Genauigkeit der Streckenmessung

3.3.1 Maßband

Durchhang

Bestimmung von Radius R

$$R^{2} = (R - h)^{2} + s^{2}$$
$$R = \frac{h^{2} + s^{2}}{2 \cdot h}$$

Bestimmung von Winkel a

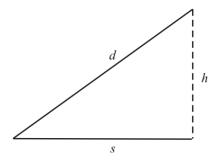
$$\sin\alpha = \frac{s}{R}$$

Bestimmung der Bogenlänge d

$$d = R \cdot 2\widehat{\alpha}$$

Temperaturausdehnung

Berechnung der Ausdehnung f


$$f = d \cdot \alpha (T - t)$$
 $\alpha = 0.0000115$

α Ausdehnungskoeffizientt Temperatur bei Messung

T.... Eichtemperatur

d.... abgelesene Strecke

Schrägmessung

$$s^2 = d^2 - h^2$$

$$s = \sqrt{d^2 - h^2}$$

3.3.2 elektro-optische Distanzmesser

<u>LEICA Builder</u> Reichweite 80 m, 250 m (Flachprisma) Genauigkeit 3 mm

Hilti POS15
Reichweite 340 m (Flachprisma)
Genauigkeit 3 mm

3.3.3 Lasergeräte (Leica Disto A5)

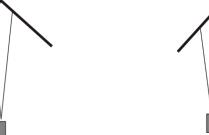
Reichweite $0.05 - 200 \, m$

(bei größeren Entfernungen müssen Zieltafeln

verwendet werden)

Messgenauigkeit $\pm 2 mm$ (bis 30 m Entfernung)

Durchmesser Laserpunkt auf $10 m \Rightarrow 6 mm$

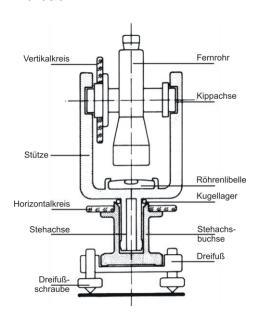

auf $30 m \Rightarrow 50 mm$ auf $100 m \Rightarrow 60 mm$

3.3.4 Geometrieprobleme bei reflektorloser Distanzmessung

Mit zunehmender Distanz wird auch der Durchmesser des Lichtkegels größer. Dadurch können erhebliche Ungenauigkeiten in der Distanzmessung entstehen.

Innenkante

Schräg zur Mauer



4 Winkelmessung

4.1 Theodolit

Der Theodolit dient zum Messen von Richtungen, und zwar horizontal und vertikal. Er kann zusätzlich mit einem elektrooptischen Distanzmesser ausgestattet werden (als Aufsatzmodell oder bereits fix eingebaut).

4.1.1. Aufbau

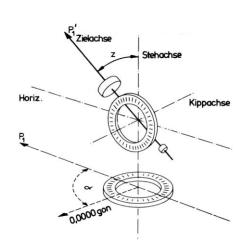
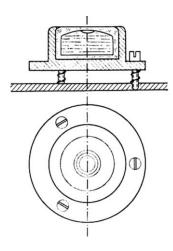
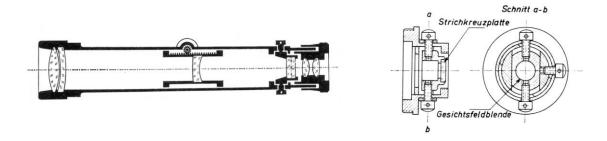



Abbildung: Untersatz - Unterbau - Oberbau

4.1.2 Libelle(n)

<u>Dosenlibelle</u> = grob horizontieren


<u>Elektronische Libelle</u> = fein horizontieren

4.1.3 Fernrohr und Strichplatte

Damit das Fernrohr, das mit dem Vertikalkreis verbunden ist, auf ein Ziel genau eingestellt werden kann, beinhaltet es neben verschiedenen Linsen auch ein feines Strichkreuz.

Vor Messbeginn muss das Strich- oder Fadenkreuz scharf eingestellt werden. Dazu muss das Fernrohr gegen einen hellen Hintergrund gerichtet und auf unendlich fokussiert werden. Anschließend wird der Okularring so lange gedreht, bis das Fadenkreuz scharf erscheint. Aber Achtung: Während des Messvorganges darf diese Einstellung nicht verändert werden.

4.1.4 Zentrierung über Punkt

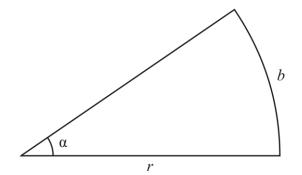
(1) Laserlot

Mit Hilfe eines Laserstrahls wird der Bodenpunkt der Stehachse angezeigt. Nachteil bei direkter Sonneneinstrahlung!

(2) Optisches Lot

Im Untersatz und/oder im Oberbau des Theodoliten integriert und besteht aus einem Fernrohr mit Fadenkreuz, bei dem der Sehstrahl um 90° nach unten gelenkt wird.

4.2 Nivelliergerät


Wie beim Theodolit kann durch Differenzbildung ein Winkel abgelesen werden, da normalerweise jedes Nivelliergerät eine Winkelanzeige besitzt.

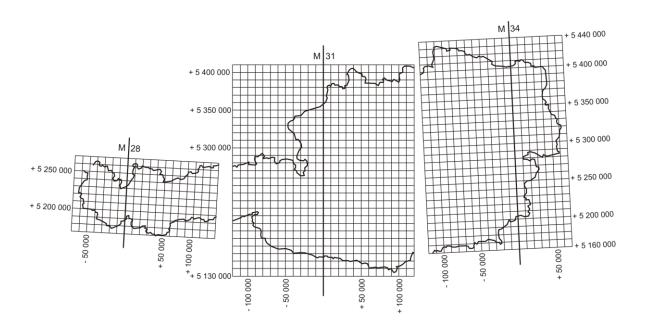
Näheres siehe nächstes Kapitel (Nivellement)

4.3 Genauigkeit der Winkelmessung

Die Genauigkeit hängt von der Zielweite ab. Mit Hilfe des Bogenmaßes und dem Radius (= Zielweite) kann der Fehler berechnet werden:

$$\widehat{\alpha} = \alpha^g \cdot \frac{2\pi}{400}$$

$$b=r\!\cdot\!\widehat{\alpha}$$


Mit den Werten $r = 100 \ m$ und $\alpha = 0,001^g$ ergibt sich ein Wert für den Bogen von $b = 1.6 \ mm$.

Will man also eine Genauigkeit von 1 *mm* erreichen, wird eine Winkelgenauigkeit von 0.0005^g auf 100 *m* benötigt.

Distanz = 50 m, Winkel = $0.01^{\circ} \Rightarrow 0.9 \text{ cm}$

5 Koordinatensystem in Österreich

Es weist besondere Eigenschaften auf:

- 1. Ursprung am Äquator
- 2. Erdkrümmung der Erde → 3 Streifen (3 Koordinatensysteme mit 28°, 31° und 34° östlich von Ferro)
- 3. Es gibt amtliche Festpunkte (siehe Anhang)
- 4. Unterschiedliche Stabilisierung

6 Satellitengestützte Messmethoden

6.1 Satellitensystem

- Ursprünglich von den USA entwickelt und ausgebaut (GPS = Global Positioning System), aber auch GLONASS (russisch), Galileo (EU), Beidou (chinesisch)
- Zu jeder Tages- und Nachtzeit mind. 4 Satelliten sichtbar
- Entfernung von der Erde ca. 20200 km
- 6 Bahnebenen (jeweils um 60° verdreht) und gegen Äquatorebene um 55° geneigt
- Gemessen wird die Zeit, die ein Signal vom Satelliten zum Empfänger auf der Erde benötigt

6.2 Bodensystem

Antenne (= Empfänger)

- Empfängt und verarbeitet die Signale in Echtzeit

 Anzahl der Kanäle
- SIM-Karte f
 ür den Empfang von Korrekturdaten (APOS, EPOSA, ...)
- Verbindung von Controller zu Empfänger per Bluetooth

Controller

- Verarbeitet übertragene Signale des Empfängers und berechnet die Position in einem bestimmten Koordinatensysten ⇒ ETRS89, WGS84
- Verwaltet Jobs (Punkte, Messdaten) und liefert die Messfunktionen (Aufnahme, Absteckung, ...)

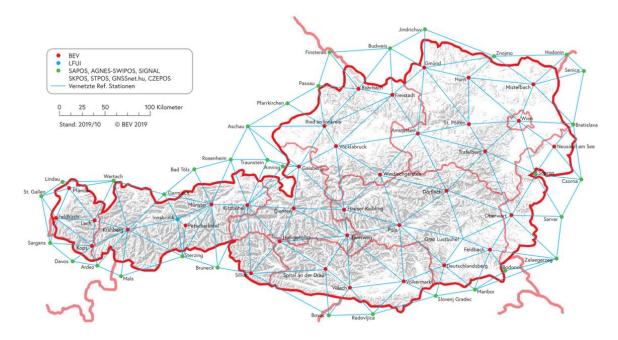
Lotstange

 Ausziehbar, meist Standardhöhe von 2,00 m eingestellt

6.3 Korrekturdaten online (RTK = real time kinematic)

Über viele Bodenstationen werden die Satellitensignale in Echtzeit ("real time") gemessen, zentral verwaltet und berechnet ⇒ Korrekturdaten über einen großen Bereich (z.B. Österreich) sind verfügbar.

Korrektursignal (z.B. APOS) wird über Mobile Internet ausgestrahlt und ersetzt die fixe Bodenstation für Genauigkeiten in der Lage (nicht Höhe!).



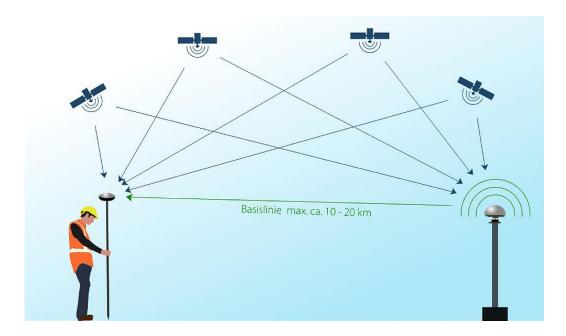

Abbildung: Standorte der Bodenstationen

Abbildung: ORS-Sendeanlage Patscherkofel mit APOS-Referenzstation

6.4 Differentielles GPS (DGPS)

Referenzstation GNSS-Station fix über bekannten Bodenpunkt ⇒ die gemessenen Werte werden mit Korrekturdaten (z.B. APOS) berechnet und mit den Koordinaten des Bodenpunktes verglichen

- Mobile Station
 Gemessene Werte werden mit Korrekturdaten berechnet ⇒ über Funk mit
 Referenzstation verbunden ⇒ erhält Korrekturwerte zwischen IST- und
 SOLL-Koordinaten ⇒ hohe Genauigkeit in Lage und Höhe
- Basislinie
 Ist der Abstand zwischen Bodenstation und mobiler Einheit ⇒ kann bis zu
 20 km betragen.

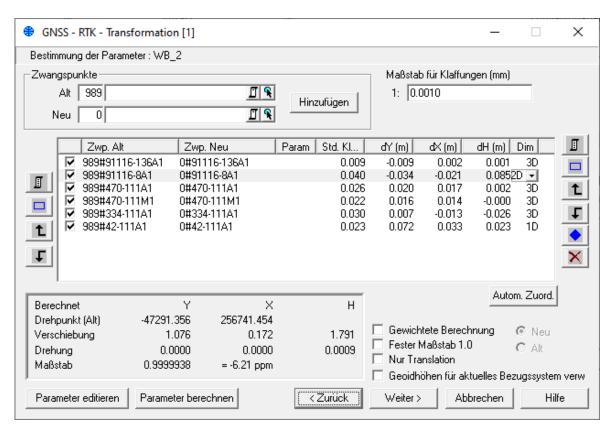
Abbildung: Bagger mit 2 GNSS-Antennen und Steuerbox

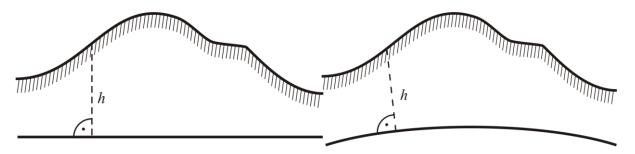
6.5 Transformation

GNSS-Systeme verwenden ellipsoidische Koordinatensysteme wie WGS84 bzw. ETRS89, d.h. die gemessenen Koordinaten eines GNSS-Rovers sind nicht im Gauß-Krüger-System vorhanden.

Umrechnung über Passpunkte, d.h. man verwendet Punkte, dessen Koordinaten in beiden Systemen vorhanden sind.

Abbildung: Parameter der Transformation – Globale Parameter vom BEV




Abbildung: Passpunkte und deren Klaffungen (Genauigkeiten) und berechnete Transformation

7 Nivellement

7.1 Höhensysteme

Ausgangspunkt = Bezugspunkt (Null-Höhe, Normalnull)
Bezugshorizont = Fläche durch den Ausgangspunkt (Rotationsellipsoid)

Die Höhe eines beliebigen Punktes ist sein vertikaler Abstand von dieser Bezugsebene.

7.1.1 Absolute Höhen

Bezugspunkt = Pegel in Triest (Molo Sartorio, beobachtet 1875 und 1900) Bezugsfläche = Rotationsellipsoid von Bessel

VORARBEITER Vermessungskunde

Als Stabilisierung von Höhenfestpunkten werden u.a. verwendet:

- horizontale Höhenbolzen (meist an Hauswänden)
- vertikale Höhenbolzen (meist auf Brücken und gemauerten Zäunen)
- Bolzen, Rohre, Nägel für lokale Höhenpunkte

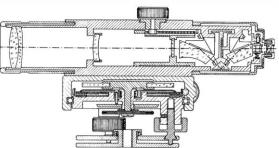
Sonderfall Wien:

Bezugspunkt = Messpunkt am Donaukanal, Höhe Schwedenplatz

Wiener Null = Höhe Triest - 156,680 m

https://www.wien.gv.at/ma41datenviewer/public/start.aspx

7.1.2 Relative Höhen


Bezugspunkt = lokale Punkt (Kanaldeckel, Randsteinkante, ...) Bei Bauprojekten von der 1. Bauinstanz vorgegeben!

7.2 Messmittel

7.2.1 Optisches Nivelliergerät

Besteht im Wesentlichen aus deinem Dreifuß mit Fußschrauben und einer Dosenlibelle (=Unterbau) sowie einem Fernrohr mit Röhrenlibelle bzw. einem Kompensator (= Oberbau).

VORARBEITER Vermessungskunde

Anmerkung:

In der technischen Beschreibung eines Nivellier wird der Winkel angegeben, den ein Kompensator ausgleichen kann.

Technische Daten	RUNNER 20	RUNNER 24	
Standardabweichung pro km			
Doppelnivellement	2.5 mm	2.0 mm	
Fernrohr			
Fernrohrbild	aufrecht		
Vergrößerung	20 x	24 x	
Freier Objektivdurchmesser	36	mm	
Kürzeste Zielweite	0.8 m		
Multiplikationskonstante	100		
Additionskonstante	0		
Kompensator			
Neigungsbereich	±	15′	
Einspielgenauigkeit (Std. Abw.)	0.	5"	
Empfindlichkeit der Dosenlibelle	10'/2	2 mm	
Horizontalkreis (Metall)	36	0°	
Skalenintervall des Hz-Kreises	1	0	
Gewicht (netto)	2 kg		
Temperaturbereich Messung	−20 °C bis +50 °C		

7.2.2 Lasergeräte

Lasergeräte können wie normale Nivelliere verwendet werden, doch an Stelle einer Visureinrichtung wird ein Laserstrahl verwendet.

Richtstrahl-Laser

Sie werden vor allem im Kanal-, Tunnel- und Brückenbau (für die Einrichtung der Schalung) sowie zur Fassadeneinmessung verwendet.

Eine automatische Erdkrümmungskorrektur kann dabei aktiviert werden.

Bei Standard-Invar-Latten: 0.2 - 0.3mm bei Standard-Nivellierlatten: 1.0mm

Distanzmessung: $15mm \ bei \ 30m$ Reichweite: 1,8-110m Kompensator-Bereich: +/-9

VORARBEITER Vermessungskunde

Rotationslaser

Sie senden einen Richtstrahl aus, der sich ständig um 400g dreht.

Am Lattenstandpunkt ist ein Detektor angebracht, der das Lasersignal aufnimmt.

Bosch GRL 300 HV Arbeitsbereich mit Empfänger: 300m (Durchmesser)

Nivelliergenauigkeit: +/- 3mm auf 30m

Leica Rugby 640G Arbeitsbereich mit Empfänger: 500m (Durchmesser)

Nivelliergenauigkeit: +/- 2,2mm auf 30m

Einsatzgebiete sind vor allem Aushubarbeiten sowie die Errichtung von Böden, Decken und Estriche (Innenbereich)

7.2.3 Zubehör

<u>Nivellierlatten</u>

Abbildungen von links nach rechts: Alu-Ausziehlatte - Holz-Latte - Präzisionslatte mit 2 Skalen - Digitalnivellierlatte mit Strichcode

Lattenuntersatz

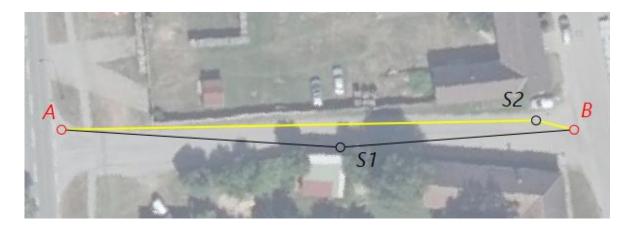
Diese auch als "Frösche" bezeichneten Untersätze dienen dazu, den zu messenden Höhenpunkt (Zwischenpunkt) in Lage und Höhe konstant zu halten.

Sie werden vor Verwendung mit den Füßen in den Untergrund getreten, damit dieser nicht verrutschen kann.

Lattenrichter

Sie dienen dazu, die Latte vertikal einzurichten. Dies ist notwendig, um die Genauigkeit der Ablesung zu erhöhen.

7.3 Messmethoden


7.3.1 Liniennivellement durch Hin- und Rückmessung

Unter einem Liniennivellement versteht man die Messung des Höhenunterschieds zwischen zwei oder mehreren Punkten bzw. die Übertragung der Höhe eines Punktes auf andere Punkte.

Lattenstandpunkte = Standpunkte, die eine Höhe bekommen sollen.

Nivellierstandpunkte = Standpunkte, in denen der Nivellier steht und von dem die Lattenwerte abgelesen werden.

Von einem bekannten Höhenpunkt *A* soll die Höhe des Punktes *B* ermittelt werden:

Ablauf:

- Nivellierstandpunkt S1 \Rightarrow Rücklesung zu A, Vorlesung zu $H_B = H_A + r\ddot{u}ck vor$
- Kontrolle \Rightarrow Nivellierstandpunkt S2 \Rightarrow Rücklesung zu B, Vorlesung zu A $H_A = H_B + r\ddot{u}ck vor$
- Ergebnis ⇒ berechneter Wert = Ausgangshöhe von A

Messprotokoll:

Punkt	rück	vor	Höhe
A	2,704		200,000 m
В		0,353	
В	0,562		
A		2,901	

Berechnung:

Man bildet zuerst die Summe aller Rück- und aller Vorlesungen:

$$\sum riick = 2,704 + 0,562 = 3,266$$
 $\sum vor = 0,353 + 2,901 = 3,254$

Der Gesamtfehler ergibt sich also aus der Differenz:

$$f = \sum r \ddot{u} ck - \sum vor = 3,266 - 3,254 = 0,012m$$

Standpunktfehler = Gesamtfehler pro Standpunkt aufgeteilt

$$f_s = \frac{f}{n} = \frac{0.012}{2} = 0.006m$$

Berechnung der einzelnen Höhen inkl. Kontrolle:

$$H_B = H_A + r_1 - v_1 - f_S = 200,000 + 2,704 - 0,353 - 0,006 = 202,345m$$

$$H_A = H_B + r_2 - v_2 - f_S = 202,345 + 0,562 - 2,901 - 0,006 = 200,000 m$$

7.3.2 Geschlossenes Liniennivellement

Die Messmethode und die Berechnung bleiben dabei gleich:

Punkt	rück	vor	Höhe
A	0,615		290,371 m
1		1,207	
1	1,335		
2		0,670	
2	1,030		
3		0,988	
3	0,983		
4		1,118	
4	1,687		
5		0,955	
5	1,213		
6		0,898	
6	1,645		
A		2,707	
Σ	8,508	8,543	

$$f = 8,508 - 8,543 = -0,035m$$
 $f_s = \frac{-0,035}{7} = -0,005m$

Berechnung der Höhen:

$$\begin{split} H_1 &= H_A + r_1 - v_1 - f_S = 290,371 + 0,615 - 1,207 - (-0,005) = 289,784 \ m \\ H_2 &= 289,784 + 1,335 - 0,670 + 0,005 = 290,454 \ m \\ H_3 &= 290,454 + 1,030 - 0,988 + 0,005 = 290,501 \ m \\ \end{split} \quad \text{usw.}$$

Kontrolle: $H_A = 290,501 + 0,983 - 1,118 + 0,005 = 290,371 m$

7.3.3 Liniennivellement mit 2 Festpunkten

Ausgangshöhe wird über zweiten Höhenfestpunkt kontrolliert.

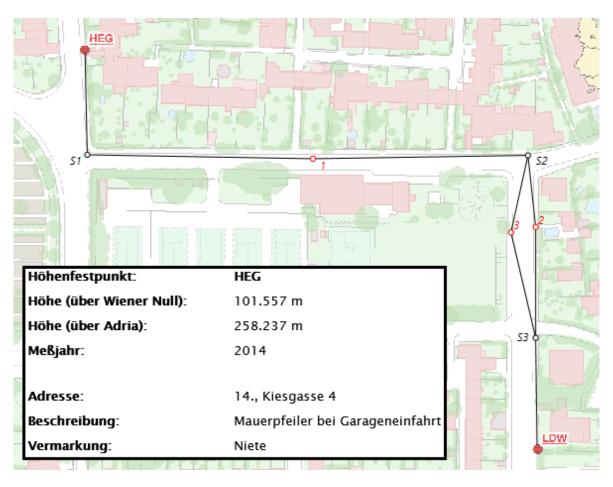


Abbildung: Höhenfestpunktkarte der Stadt Wien, Punkte HEG und LDW, Detailabfrage von HEG

Fehlerberechnung: $f = (H_A - H_B) + \sum r \ddot{u} ck - \sum vor$

Die Bestimmung der Höhen erfolgt genauso wie im vorigen Beispiel.

Aufgabe 4	gegeben ist	folgendes	Messprotokol	1	
	Punkt	rück	vor		
	A	1,687		123,471 m	
	1		1,032		
	1	0,455			
	2		1,901		
	2	2,309			
	3		2,010		
	3	1,427			
	В		1,988	122,442 m	
	Berechne	kontrollier	t die Höhen	der Punkte 1 bis 3.	

7.3.4 Liniennivellement mit Seitpunkten

Beim Nivellement werden nicht nur Höhen benötigt, die durch Rück- und Vormessung bestimmt werden, sondern es werden von einem Nivellierstandpunkt mehrere Höhen eingemessen.

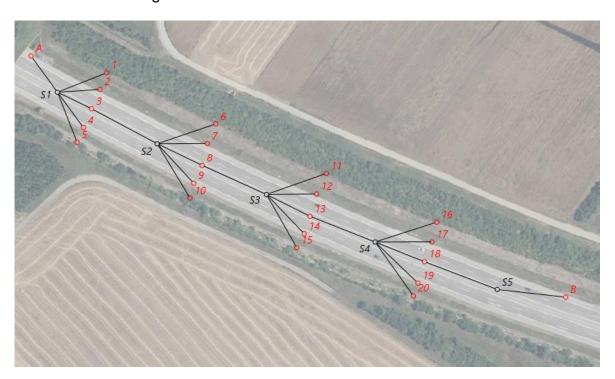


Abbildung: A, B = Höhenfestpunkte S = Nivellierstandpunkte
Punkte 3, 8, 13, 18 = Hauptpunkte (Vor- und Rückmessung), kontrolliert
Restliche Punkte = Detailpunkte, nicht kontrolliert

Im Messprotokoll wird für die Seitpunkte eine eigene Spalte geführt.

Punkt	rück	vor	seit	Höhe
A	0,615			290,371 m
1			3,952	
2			1,763	
3		1,207		
4			1,981	
5			3,611	
3	1,335			
6			3,455	
7			1,903	
8		0,670		
9			1,974	
10			3,276	

8	1,030			
11			3,150	
12			2,025	
13		0,988		
14			1,845	
15			2,996	
13	0,983			
16			3,049	
17			1,880	
18		1,974		
19			1,863	
20			3,005	
18	1,118			
В		2,044		288,544 m
Σ	5,081	6,883		

Zuerst werden die Punkte 3, 8, 13 und 18 bestimmt über Vor- und Rückvisur:

$$f_{S} = \frac{0,025}{5} = 0,005m$$

$$H_{3} = H_{A} + r_{A} - v_{3} - f_{S} = 290,371 + 0,615 - 1,207 - 0,005 = 289,774 m$$

$$H_{8} = 289,774 + 1,335 - 0,670 - 0,005 = 290,434 m$$

$$H_{13} = 290,434 + 1,030 - 0,988 - 0,005 = 290,471 m$$

$$H_{18} = 290,471 + 0,983 - 1,974 - 0,005 = 289,475 m$$

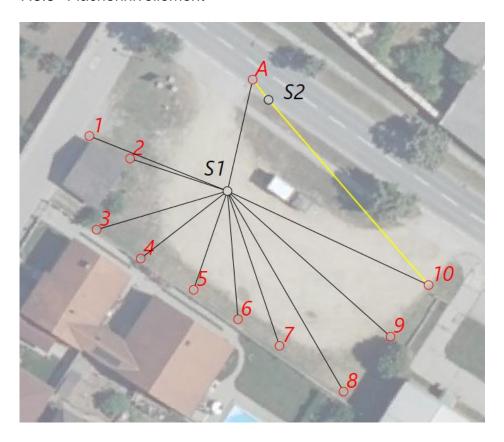
Kontrolle:
$$H_B = 289,475 + 1,118 - 2,044 - 0,005 = 288,544 m$$

Jetzt können auch die Seitpunkte höhenmäßig bestimmt werden:

Die Punkte 1, 2, 4, 5 wurden innerhalb einer Rückvisur zu Punkt A gemessen, daher wird auch die Höhe von A verwendet:

$$H_1 = H_A + r_A - s_1 = 290,371 + 0,615 - 3,952 = 287,034 m$$

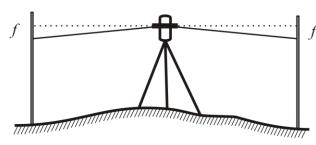
 $H_2 = H_A + r_A - s_2 = 290,371 + 0,615 - 1,763 = 289,223 m$
 $H_4 = H_A + r_A - s_4 = 290,371 + 0,615 - 1,981 = 289,005 m$
 $H_5 = H_A + r_A - s_5 = 290,371 + 0,615 - 3,611 = 287,375 m$

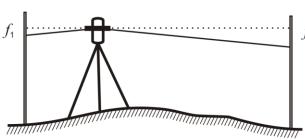

Die Punkte 6, 7, 9, 10 wurden zur Rückvisur nach Punkt 3 gemessen, also wird die Höhe von Punkt 3 verwendet:

$$H_6 = H_3 + r_3 - s_6 = 287,774 + 1,335 - 3,455 = 285,654 m$$

Auf diese Weise werden alle restlichen Punkte berechnet.

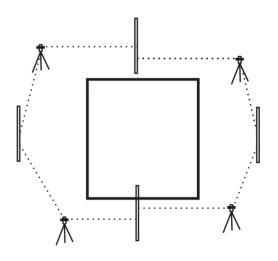
7.3.5 Flächennivellement


- Wenig Aufstellungen, viele Höhen in kleinem Bereich bestimmen
- Kontrolle durch 2. Aufstellung (nah an Messlatte) ⇒ S2
- Alternativ kann ein 2. Nivellier verwendet werden


7.4 Genauigkeit eines Liniennivellements

Die Genauigkeit hängt von der Aufstellung und Justierung des Nivelliers, der verwendeten Geräte und der Genauigkeit der Ablesung ab.

Prinzipiell sollte man mit dem Nivellier in der Mitte zweier Lattenstandpunkte stehen, da sich dadurch auftretende Aufstellungsfehler eliminieren:


Fehler *f* tritt auf beiden Seiten auf – er verschwindet bei der Differenzbildung

Fehler f ist unterschiedlich – nach der Differenzbildung bleibt ein Restbetrag $\Delta f = f_2 - f_1$ übrig.

Weiters soll die Latte vertikal gehalten werden. Schrägstellungen quer zur Visur können vom Beobachter gesehen werden, in Visurrichtung aber nicht. Hier werden die Ablesungen verfälscht.

Die Hin- und Rückvisur sollte annähernd auf einer Geraden liegen.

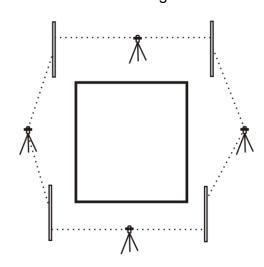
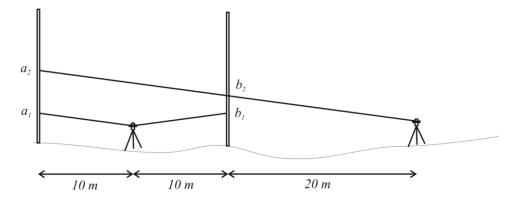


Abb.: falsche Messanordnung

Abb.: richtige Messanordnung

7.5 Prüfverfahren für Nivelliergeräte

7.5.1 Dosenlibelle


Dosenlibelle genau einspielen ⇒ Fernrohr um 180° drehen:

- Dosenlibelle nochmals genau einspielen ⇒ eventuell Vorgang wiederholen

7.5.2 Ziellinie

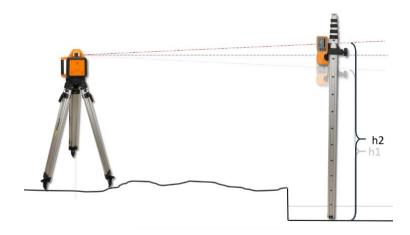
Die Strichplatte im Fernrohr beinhaltet das Fadenkreuz. Diese Platte kann zu hoch oder zu niedrig eingestellt sein. Eine fehlerhafte Position kann zu großen Fehlern führen.

In regelmäßigen Zeitabständen (alle 6 Monate) oder wenn der Nivellier starken Erschütterungen ausgesetzt wurde, sollte ein Überprüfung der Ziellinie erfolgen.

Aufstellung 1 in der Mitte der Punkte A und B ergeben die Ablesungen a_1 und b_1 , wobei die Distanz zu A bzw. zu B 20 m beträgt.

<u>Aufstellung 2</u> erfolgt 20 *m* über Punkt B hinaus. Hier werden die Ablesungen *a*₂ und *b*₂ durchgeführt.

Berechnung des doppelten Fehlers: $2 f = (a_2 - b_2) - (a_1 - b_1)$


Übersteigt der berechnete Fehler die gewünschte Genauigkeit, muss die Soll-Ablesung berechnet werden. Das ist jene Ablesung, die man gemacht hätte, wenn kein Fehler vorhanden wäre:

$$a = a_2 - 4f$$
 $b = b_2 - 2f$

Nun muss mit einem passenden Schraubschlüssel die Ziellinie so eingestellt werden, dass bei Lattenstandpunkt A der Wert *a* bzw. bei Lattenstandpunkt B der Wert *b* abgelesen wird.

7.5.3 Rotationslaser

- (1) Rotationslaser aufstellen, an Messlatte Ablesung durchführen (= h1), z.B. bei einer Distanz von 20 m
- (2) Laser um 180° drehen und nochmals messen (= h2)
- (3) Fehler $f = \frac{h_1 h_2}{2}$ in Bezug auf Abstand 20 m
- (4) Prüfen, ob Fehler *f* innerhalb oder außerhalb der Genauigkeitsangabe des Herstellers liegt.
- (5) Laser um 90° drehen ⇒ zweite Achsrichtung prüfen ⇒ gleiches Verfahren

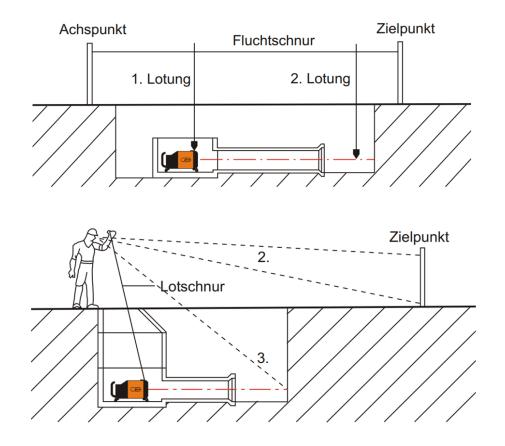
7.6 Kanalbau-Laser

7.6.1 Aufbau / Einrichtung

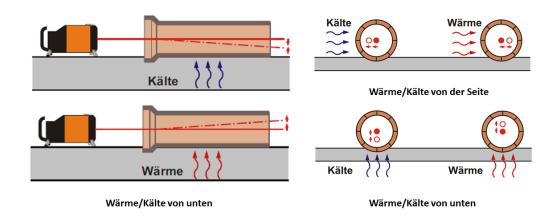
Kanalbaulaser senden einen automatisch horizontalen oder definiert geneigten Laserstrahl als Bezugsachse aus. Statt eines Handempfängers wird der Laserstrahl bei diesen Geräten auf eine spezielle Zieltafel geleitet.

VORARBEITER Vermessungskunde

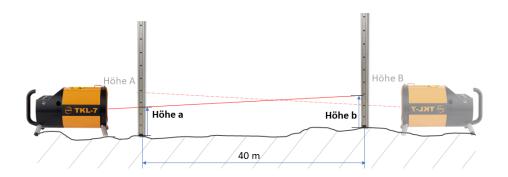
Der Kanallaser muss auf die gewünschte Achse eingerichtet und der Laser auf die gewünschte Neigung eingestellt werden.


- Einrichtung der Richtung (links/rechts) über eine Lotstange
- Eingabe der gewünschten Neigung
- Ist die Richtung an der gewünschten Position, kann der Laserstrahl per Controller zum Leitstrahl gewechselt werden
- <u>Einsatzbereich</u>: zum Verlegen von Drainagen und Rohrleitungen aller Art, bei denen Richtung und Gefälle präzise stimmen müssen

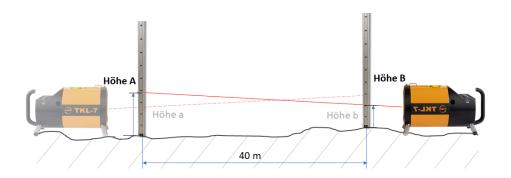
Kanallaser können in positiver Richtung bis zu + 40 % geneigt werden. Somit kann selbst aus tiefen Schächten heraus der Laserpunkt ausreichend hochgefahren werden, um sich anhand der Fluchtstange auszurichten.

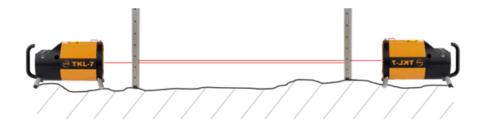

Weitere Möglichkeiten der Achs-Einrichtung:

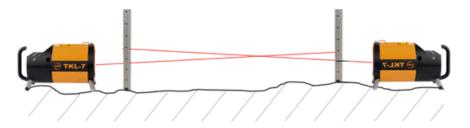
- (1) Laser über der Achse aufbauen, Ziellatte aufstellen
- (2) Lotschnur einrichten (über die Lotschnur zum Fluchtstab schauen)
- (3) Über die Lotschnur schauen und den Laserstrahl einrichten


7.6.2 Refraktionseinfluss

Dieser Einfluss ist generell bei Geräten, die mit Licht messen, gegeben – also auch Tachymeter, normale Nivelliere und Laser-Nivelliere. Der Lichtstrahl wird immer zum kälteren Medium abgelenkt.




7.6.3 Justierung prüfen

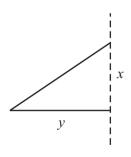

Standpunkt 1 – Messung der Höhen a und b an 2 unterschiedlichen Lattenstandpunkten

Standpunkt 2 – Messung der Höhen A und B an den gleichen Lattenstandpunkten

Justierung stimmt da Laserstrahlen parallel verlaufen

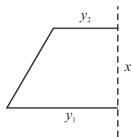
Justierung stimmt nicht

Es muss gelten: $(A-a) = (B-b) \Rightarrow$ Laserstrahlen verlaufen parallel

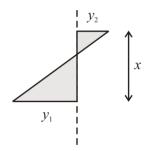

Bei Abweichungen über 4mm sollte der Kanallaser justiert werden.

8 Flächenbestimmung

8.1 Flächenrechnung mit Maßzahlen


Dieses Verfahren bietet sich an, wenn die zu bestimmende Fläche in Dreiecke oder Trapeze zerlegt werden kann und ihre Seitenlängen gemessen wurden.

Verwendet man ein lokales Koordinatensystem mit Hilfe eines Orthogonalverfahren, kann die Gesamtfläche in Teilflächen unterteilt werden, wobei 3 Fälle unterschieden werden:


Dreieck

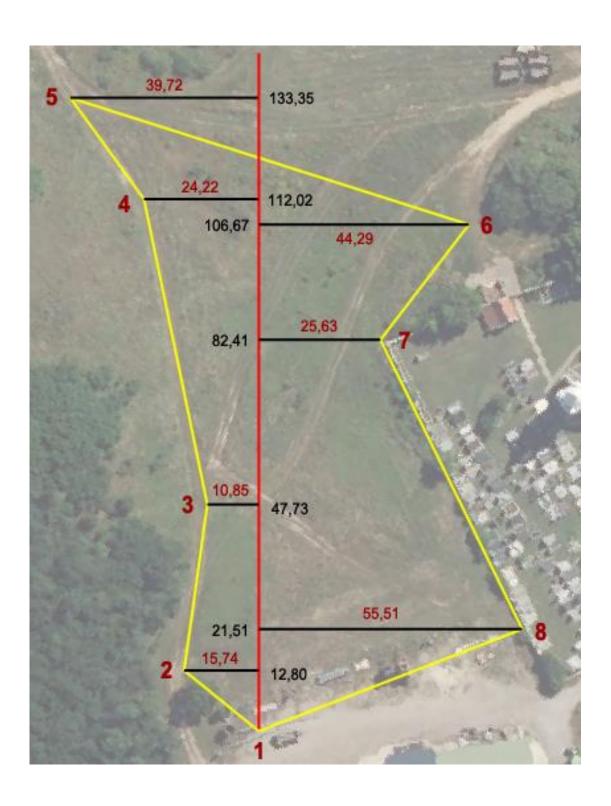
$$2F = x \cdot y$$

Trapez

$$2F = (y_1 + y_2) \cdot x$$

verschränktes Trapez

Dieser Fall tritt ein, wenn nur der Anfangspunkt auf der Basislinie liegt, die andere Seite jedoch die Basislinie schneidet.

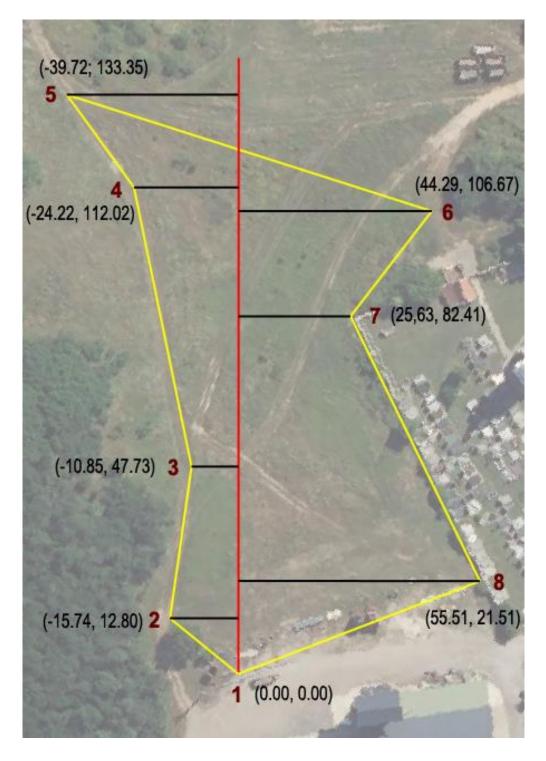

Wird ein Trapez auf der rechten Seite addiert, wird ein kleines Dreieck zuviel hinzugerechnet.

Andererseits fehlt auf der linken Seite ein Dreieck.

Diese beiden Dreiecksflächen (eine addieren, eine subtrahieren) können mit Hilfe nachstehender Formel auf einmal berücksichtigt werden:

$$2F = (y_2 - y_1) \cdot x$$

Es wird genau jener *y*-Wert subtrahiert, dessen Dreiecksfläche weggenommen werden muss. Das Ergebnis kann auch negativ sein!


Aufgabe 5	gegeben:	Skizze mit eingetragenen Maßzahlen
	gesucht:	Die Fläche zwischen den Punkten 1 und 6
	Hinweis:	Die Maßzahlen entlang der Basislinie sind Laufmaße.

8.2 Flächenrechnung mit Koordinaten

Liegen bereits Koordinaten der einzelnen Flächenpunkte vor, kann sofort deren Fläche bestimmt werden:

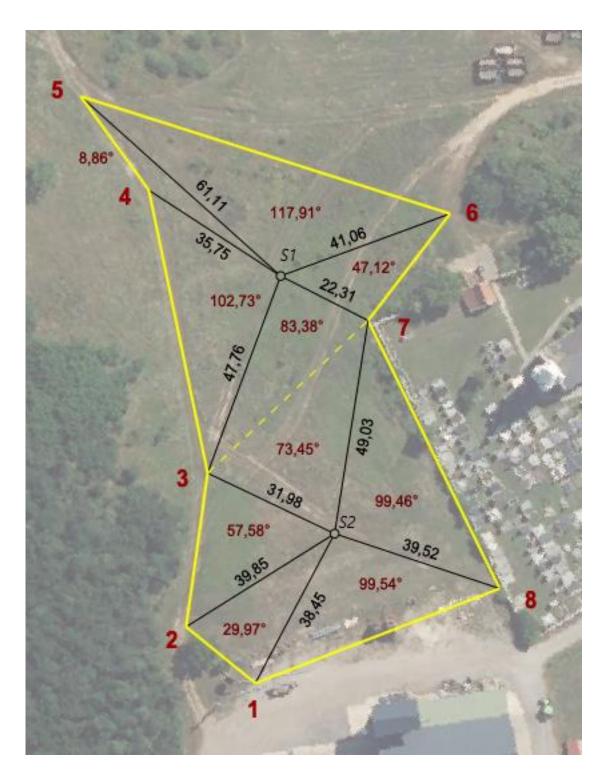
$$2F = \sum (x_i - x_{i+1}) \cdot (y_i + y_{i+1})$$

Punkt	\boldsymbol{x}	y	$x_i - x_{i+1}$	$y_i + y_{i+1}$	2F
1	0,00	0,00	-12,80	-15,74	201,47
2	12,80	-15,74	24.02	26.50	029.70
3	47,73	-10,85	-34,93	-26,59	928,79
			-64,25	-35,07	2253,25
4	112,02	-24,22	-21,33	-63,94	1363,84
5	133,35	-39,72			
	106.67	44.20	26,68	4,57	121,93
6	106,67	44,29	24,26	69,92	1696,26
7	82,41	25,63	27,20	0,,,2	
			60,90	81,14	4941,43
8	21,51	55,51	21,51	55,51	1194,02
1	0,00	0,00	21,31	33,31	1194,02
				Summe 2F	12700,99
				Summe F	6358,50

Info: Falls der Wert 2F negativ ist, muss der Betrag davon genommen werden.

8.3 Flächenrechnung mit Winkeln und Seiten

Mit Hilfe eines Tachymeters bzw. Nivellier können Horizontalwinkeln abgelesen werden. Damit kann auch eine Fläche bestimmt werden, indem die Gesamtfläche in einzelne Dreiecke zerlegt werden.


Man stellt sich ungefähr in der Mitte der zu berechnenden Fläche auf, visiert jeden Kantenpunkt an und notiert eine Winkelablesung und misst die Seite.

Danach kann für jedes Dreieck eine Fläche bestimmt werden:

$$F = \frac{1}{2} \cdot s_1 \cdot s_2 \cdot \sin \gamma$$
 bzw. $2F = s_1 \cdot s_2 \cdot \sin \gamma$

Je nach Situation können auch mehrere Aufstellungen notwendig sein.

VORARBEITER Vermessungskunde

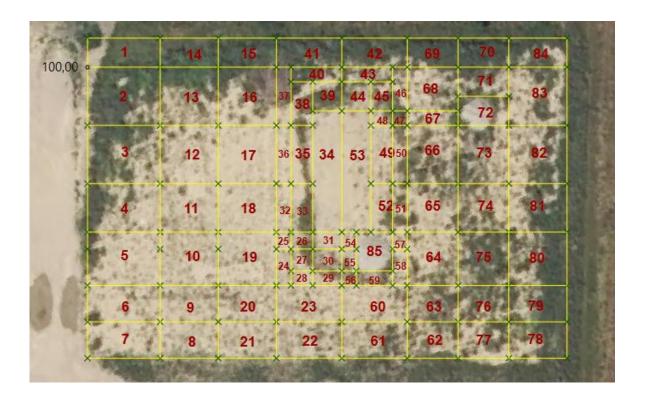
Aufgabe 6	gegeben:	Skizze und Messprotokoll mit allen gemessenen Seiten und Winkeln
	gesucht:	Die Fläche zwischen den Punkten 1 und 6

Punkt	S	γ	2F
3	47,76	102,73°	
4	35,75		
5	61,11	8,86°	
	01,11	117,91°	
6	41,06	· 	
7	22.21	47,12°	
/	22,31	83,38°	
3	47,76	63,36	

Summe 2FSumme F

Punkt	S	γ	2F
3	31,98	73,45°	
7	49,03		
8	39,52	99,46°	
	57,52	99,54°	
1	38,45		
2	39,85	29,97°	
		<i>57,58</i> °	
3	31,98		

Summe 2F Summe F



9 Massenbestimmung

Normalerweise wird man bei der Massenbestimmung auf regelmäßige Körper zurückgreifen und damit näherungsweise die Kubatur bestimmen. Mit ein wenig Erfahrung wird diese Art gut funktionieren.

Hat man aber eine sehr unregelmäßige Struktur zu bestimmen, wird man mit regelmäßigen Körpern nicht mehr weiterkommen.

In diesem Fall legt man sich einen Raster über das Gebiet, indem man mit Farbe deren Rasterpunkte markiert. Die Abstände des Rasters sind entsprechend zu wählen und können innerhalb des Rasters variieren.

Anschließend werden die Rasterpunkte einnivelliert - die Rasterweite ist individuell festgelegt und variiert.

Jeder Quader wird einzeln berechnet: Länge x Breite x mittlerer Höhe

Mittlere Höhe = arithmetisches Mittel der Höhen der 4 Eckpunkte

Dies wird für alle Quader berechnet und am Ende werden alle Teil-Massen addiert.

10 Kataster

10.1 Entstehung und Aufgabe

Ursprünglich wurde der Kataster zur Besteuerung von Grund und Boden von Maria Theresia eingeführt. Im Laufe der Zeit hat sich die Aufgabe geändert – heutzutage ist die Sicherung des Grundeigentums zentraler Punkt.

Die Führung des Katasters obliegt den einzelnen Vermessungsämtern, die bestimmte Katastralgemeinden verwalten.

10.2 Bestandteile des Katasters

Der Kataster besteht aus dem technischen Operat und dem Grundstücksverzeichnis, das wiederum mit dem Grundbuch gekoppelt ist.

Technisches Operat

- alle technischen Unterlagen zur Lagebestimmung der Festpunkte und der Grenzen der Grundstücke, d.h. alle Punkte des Festpunktfeldes der Landesvermessung und das Koordinatenverzeichnis über alle Grenzpunkte im Landeskoordinatensystem
- 2. alle technischen Unterlagen für die Ersichtlichmachungen (= Abgrenzung der verschiedenen Benützungsabschnitte, Flächeninhalte, dieser Benützungsabschnitte, ...). Sie sind nur in graphischer Genauigkeit gegeben.
- 3. die Katastralmappe (= Plan der Grundstücke inkl. Ihren Benützungsarten, Riednamen, Straßennamen, ...)

Grundstücksverzeichnis

Enthält die Grundstücksnummer, Benützungsarten, Gesamtflächenausmaß, Einlagezahl des Grundbuches (EZ), Blattnummer der Katastralmappe, Widmung, Veränderungshinweise (geben Aufschluss über Grundbuchsbeschlüsse) sowie Eintragungen des Grundbuches über den Eigentümer.

10.3 Grundsteuerkataster

Er dient lediglich zur Veranschaulichung der Grundstückslage – ohne Rechtskraft der Grundgrenzen. Im Zweifelsfall wird allerdings die Lage als tatsächliche Grenze herangezogen.

Die Genauigkeit der Grundsteuerkatasters beträgt rund $\pm 5~cm$, in Sonderfällen sogar darüber.

VORARBEITER Vermessungskunde

10.4 Grenzkataster

Seine eingetragenen Grundgrenzen sind über Koordinaten festgelegt und rechtsgültig. Es kann zu keinen Grenzstreitigkeiten führen, da die Grenze jederzeit wiederhergestellt werden kann. Eine Ersitzung ist ebenfalls nicht möglich.

Um ein Grundstück in den Grenzkataster zu bringen, ist eine Grenzverhandlung mit allen betroffenen Grundeigentümern notwendig, die die einzelnen Grenzpunkte festlegen und dafür ihre Zustimmungserklärung abgeben. Die vereinbarten Grenzpunkte werden vom Geometer am selben Tag koordinativ festgelegt und an das Festpunktfeld angeschlossen.

Ein Grundstück im Grenzkataster ist ersichtlich, indem im Kataster die Grundstücksnummern strichliert unterstrichen sind bzw. im Grundbuch ein "G" vor der Grundstücksnummer vorangestellt wird.

A Topographie

BEV - Bundesamt für Eich- und Vermessungswesen

Punktkarte

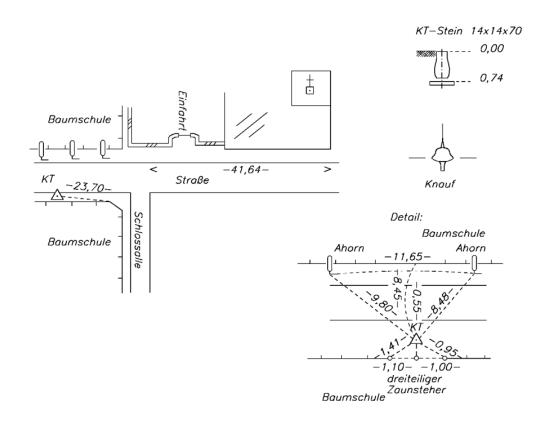
Triangulierungspunkt 735-38

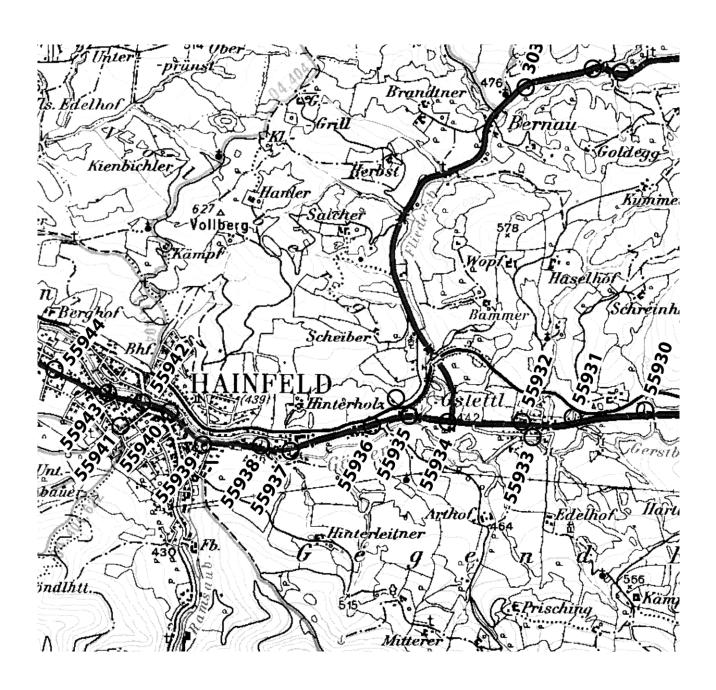
Punktname: HAINDORF,SCHLOSS
Ordnung: 5
Auflage der Punktkarte: 1a
Meridian: 34

Bundesland: Niederösterreich Politische Gemeinde: Langenlois

Gerichtsbezirk: Krems an der Donau Vermessungsbezirk: Krems an der Donau

Punkthinweis: G


Letzte Begehung: 01.07.2010



KZ	Stabilisier	erung, Bezug J.Lage			у _{ск} [m]	X _c	_{sк} [m]	OP.Lage	h [m]	Op.Hö	he SHW
A1	KT-STEIN/	STEIN OBERFLÄCHE 2001 -46889,53 5370590,89 N/811				206,2	9 N/81	1 G			
T1	KNAUF/MI	-/MITTE 2001 -46785,89 5370560,50 N/811				227,3	5 N/81	1			
KZ	KG-Nr.	KG-Nr. KG-Name							Gst.Nr.		Mbl.
A1	12212	2 Haindorf						344		7138-75/1	
T1	12212 Haindorf							.58	7138-75/2		
Orien	Orientierungspunkte Punktname Pkt.Art KZ Stab.Art					AL	Jahr	SHW			
115-3	5-38 KAMPTALWARTE TP T1 KNAUF/MITTE				5	1984					

Lage- und Wegbeschreibung:

Teil 1 / 1

Präzisionsn	ivellement	55	939
Katastralgemeinde: Gerichtsbezirk: Vermessungsbezirk: Bundesland: Auflage der Punktkarte: Frühere Punktnummer: ident mit TP/EP:	St. Pölten Niederösterreich	Mappenblatt: Grundstück:	56 7133-71/2 .2/2 1987 1986 P 985 422,712 1986 Scheitel
sonstige Identität: Stabilisierungsart	Höhenbolzen horizontal	aus Operat: Messwege zu Punkt [m]:
Traisen Gt	B _{1B} Kau	0, <u>52</u> 0,31 -0,72- 0,00	
	Nr.12	ossos ///	

Stand: 29.06.2007

B Katastralmappe

C Quellen- und Literaturverzeichnis

Großmann Walter, Heribert Kahmen: Vermessungskunde I. Verlag deGruyter, Berlin 1985

Großmann Walter, Heribert Kahmen: Vermessungskunde II. Verlag deGruyter, Berlin 1985

Firmenprospekte der Firma Leica-Geosystems, Trimble (Allterra), Bosch Produktabbildungen von Goecke-Austria Abfrage-Produkte des Bundesamtes für Eich und Vermessungswesen (BEV)

Verwendete Orthofotos für die planliche Darstellung vom BEV

D Angaben zum Autor

Dipl.-Ing. Manfred Huber Untere Hauptstraße 31 2475 Neudorf

e-Mail: vermessung@geoweb.at

Internet: www.geoweb.at